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1. Sources of the Emittance Dilution 
♦ Emittance growth is irrecoverable and all the means need to be applied to prevent it 
Ø No antiproton beam cooling after the beam leaves accumulator 
Ø No cooling for proton beam 

♦ Emittance growth reduces initial luminosity and, consequently, integrated luminosity 
Ø due to beam size increase 
Ø due to intensity loss related to scraping particles with large amplitudes 

♦ Emittance preservation requires 
Ø Prevention emittance growth during beam transfers 

• Prevention/suppression of the emittance growth due to injection errors 
Ø Turn-by-turn measurements position measurements for every injected bunch are used to 

close the orbit 
Ø Injection dampers  

• Careful optics design and measurements to prevent emittance growth due to optics 
mismatches 

Ø Prevention emittance growth at beam acceleration 
• Tune and chromaticity control 

Ø Prevention/Reduction of the emittance growth during store 
• Gas scattering 
• Noises affecting the beam (RF, kickers, et. c.) 
• IBS scattering 
• Beam-beam effects 
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2. Beam Transfers 
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The layout of transfer lines 

♦ Transfers which require further 
improvements 
Ø Pbar transfers 

• From Accumulator to MI, 8 GeV 
• From MI to Tevatron, 150 GeV 
Ø Proton transfers  

• from MI to Tevatron, 150 GeV 
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Status and projections for the beam transfers 
March 2003 Goal (~June 2003)  Line Energy 

[GeV] εin / εfin
*
 

[mm mrad] 
Transfer 

efficiency 
εin / εfin

*
 

[mm mrad] 
Transfer 

efficiency 
Accumulator to MI, p  AP3-P1 8 6 / 8 97% 7**/ 8 >99% 

MI to Tevatron, p  A1 150 10/17 99% 10 / 12 99% 
MI to Tevatron, p P1 150 21/24 99% 21 /23 99% 
∗    ε  ≡ (εx +εy)/2; **  170 mA pbar stack;  
♦ Pick luminosity rises with emittance decrease due to 
Ø Smaller beam size at collisions 
Ø Beam current increase due to increase of beam life 

time at the injection and top energies 
• Reducing pbar emittance in the Tevatron from ~20 mm 

mrad to ~12 mm mrad should decrease pbar loss at 
acceleration and squeeze from ~10-12% to 1-2%  

♦ Presently, major contribution to the antiproton beam 
emittance growth comes from the beam transfers 
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Emittance Growth due to Injection Oscillations 
 
 

Present performance Goal  
Ax/Ay 
[mm] 

∆εx/∆εy 
[mm mrad] 

A, [mm] 
no damper 

A, [mm] 
with damper 

∆ε 
[mm mrad] 

Accumulator to MI, p  1 – 2 0.5 – 2 < 0.7 3 < 0.25 

MI to Tevatron, p  0.5 – 1 1.2–4.7/ 1.9–7.7 < 0.25 1.5 < 0.5 

MI to Tevatron, p 0.25–0.5 0.3–1.2/0.48–1.9 < 0.25 1.5 < 0.5 
 

♦ Sources of injection oscillations 
Ø Initial injection errors 
Ø Shot-to-shot field variations in dipoles, dipole correctors and kickers 
Ø Bunch-to-bunch field variations in correctors for both pbar transfers 

♦ Ways to implement good quality of transfers 
Ø Orbit closure before colliding bunches are injected 
Ø Orbit closure correction for every new injection 

• Tevatron injection dampers should come in April-May 2002 
♦ Turn-by-turn BPM measurement for every injected bunch confirms transfer quality 
Ø 3 types of Beam Line Tuners (BLT) were tested before we come up to the final choice 
Ø Old Run I BLT 
Ø BLT based on a digital receiver  
Ø BLT based on the fast (0.4 ns/sample) digital scope – is a final choice 
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♦ Complications of BLT(BPM) turn-by-turn signal analysis come from interplay of 
• effects of chromaticity 
• and close lengths of the bunch and BLT plates   
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• Numerical deconvolution of digitized BLT signals create simple and reliable way to 

compute bunch center of gravity 
• In addition to the standard beam position the digital scope data represent internal motion 

in the bunch 
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Optics Mismatch 
♦ Types of possible optics mismatch 
Ø Betatron functions mismatch 
Ø Dispersion mismatch 
Ø Mismatch due to coupling 
Ø Optics changes for antiprotons due to long-range beam-beam effects  

♦ Pbar transfers from MI to Tevatron exhibit significant emittance growth  
Ø Round trip emittance measurements (MI→Tevatron→MI) are the most reliable. 

 They yield 
 ∆εx ~ 5-8 mm mrad, horizontal  
 ∆ε y  ~ 3-5 mm mrad, vertical 

§ All indirect indications point to the A1 line transfer as a major problem 
Ø The reason of the emittance growth is still not 100% clear 

• Optics for A1 line was corrected, measured and is believed not to be a problem 
• Initial injection oscillations contribute only fraction of the measured increase 
• Tevatron optics and coupling is still not fully understood 
§ Optics measurements at central orbit and their analysis were carried out  

Ø A number of optics problems has been discovered   
Ø but the difference with the design model is sufficiently small and cannot 

explain the observed emittance growth 
§ Optics measurements at pbar helix will be acquired within a week 

Ø It is expected that optics at pbar helix is quite different from the central orbit 
optics and this is a major source of the problems 
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Tevatron optics measurements  150 GeV, central orbit, data were taken at Feb.20. 2003 
X1:  HE42 = 50 mrad 
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• Altogether five differential orbits are acquired (4 correctors and energy change) 
• Fitting to measurements yields reliable model of the machine 
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4D beta-functions and positions of skew-quads 
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Dispersions 
Skew-quad term in dipoles (∆B/B ≈ 5.7⋅10-5 at 1 cm) is the main source of Tevatron coupling 

• It originates from the drowning of the SC coil relative to the iron core 
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Fudge factors and rolls to fix linear optics 
Global corrections 

• $F_bendq = 2%; correction of dipole edge focusing 
• $F_mq = 0.165%; correction of main bus quad focusing 
• $F_Dskew = 1.44 units; skew quadrupole field of main 

dipoles 
Point like corrections of quadrupole focusing 

• $F_qA0U = 1%; related to beam displacement in A0 
• $F_qC27 = -2% 
• $F_CQ7= 20%; that corresponds to 4.4% correction for 

regular main bus quad 
• $F_B0Q3F = 0.37% 
• $F_D0Q3F = 0.6%;   
• $F_D0Q2D =1%; 

Quad rolls 
• $Qroll_A0U = 0.5 deg; related to beam displacement in A0 
• $Qroll_B0Q7= -4 deg; 

Conclusions for BPMs 
• T:VPF0LU and T:VPF0LD are swapped  
• T:HPF0LU and T:HPF0LD are swapped 
• T:HPC28 has wrong polarity 
• T:HPB22 has large noise and incorrect differential position 
• T:VPC21 , T:HPC22 and T:HPC36 have large difference for positive and negative bumps. Probably 

there is large beam offset in BPM. 
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3. Luminosity Lifetime  
The model takes into account the major beam heating and particle loss mechanisms 

• Phenomena taken into account 
⇒ Interaction with residual gas 

♦ Emittance growth due to electromagnetic scattering 
♦ Particle loss due to nuclear and electromagnetic interaction 

⇒ Particle interaction in IPs (proportional to the luminosity)   
♦ Emittance growth due to electromagnetic scattering 
♦ Particle loss due to nuclear and electromagnetic interaction 

⇒ IBS 
♦ Energy spread growth and emittance growth due to multiple scattering 

⇒ Bunch lengthening due to RF noise 
⇒ Particle loss from the bucket due to heating of longitudinal degree of freedom 

• Phenomena ignored in the model 
⇒ Beam-beam effects 
⇒ Non-linearity of the lattice 
⇒ Diffusion amplification by coherent effects 

• Thus, it can be considered as the best-case scenario 
⇒ It describes well our best present stores 
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Comparison of the Model Predictions to the Store 1953 parameters  
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Conclusions 
♦ Injections errors have been a leading reason of the antiproton beam emittance growth  
Ø Introducing turn-by-turn measurements for every bunch injected into Tevatron allowed us 

to improve orbit closure. That yielded significantly improvement for beam transfers 
Ø Further improvements are expected after commissioning of Tevatron injection damper 

(April 2003)  
♦ First optics correction in A1 line brought better transfers and luminosity increase  
Ø Optics corrections and Tevatron, A1 and P1 lines are expected to produce further 

reduction of the beam emittances  
♦ Significant progress in understanding of luminosity lifetime has been achieved 
Ø The model predicts that  

• IBS is major mechanism for emittance dilution and beam current reduction 
• There is no other than IBS and major heating mechanisms limiting Tevatron 

performance 
§ Further improvements of Tevatron vacuum and RF noise will not yield significant 

improvements in integrated luminosity  
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Requirements for dispersion 
mismatch for MI to Tevatron 

transfer 
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♦ Dispersion mismatch below about 0.5 
m does not produce significant 
emittance growth 

Emittance Growth due to Betatron and Dispersion Mismatch 
Emittance growth from a lattice with β1, α1, D1 and 1D′  to a lattice with β2, α2, D2 and 2D′  is 
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Emittance growth due single quad focusing 
error at zero dispersion 
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♦ Differential orbit measurements allow seeing 

focusing errors of 1-2%.  
Ø It is sufficient to tune the line focusing so that the 

emittance growth would be below 10%.  
Ø Further improvement is expected from online 

tuning with orthogonal quads.  
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Emittance Growth due to X-Y Coupling 
 

Emittance growth for beam transfer from an uncoupled lattice with βx, αx, βy and αy, to a 
coupled lattice described by β1x, α1x, β1y, α1y, β2x, α2x, β2y and α2y with the eigen-vectors 
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is determined by the following equations:   
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